
• Distributed data-parallel (DDP) is the de-facto standard for training large-scale deep-learning. Hence, extensive efforts 
are put forth in reducing the computation as well as the communication time of a DDP job - but these efforts focus on 
reducing the average job completion times – making the system still susceptible to long-tails.

• We present Ultima, a collective-communication system for DDP All-Reduce that ensures bounded, predictable 
completion times in the presence of myriad computation and communication variabilities. Our approach exploits the 
stochastic nature of machine learning systems to work with approximated gradients (as previously exploited by 
gradient sparsification, gradient compression, hardware design optimization, and in-network aggregation techniques) to 
provide an efficient balance between (tail) performance and the resulting accuracy of the trained models.

1. Abstract

2. Existence of tail

3. Our proposal: Ultima

Ultima: Robust and Tail-Optimal All-Reduce for Distributed Deep Learning
Ertza Warraich, Leonard Liu, Omer Shabtai, Yonatan Piasetzky, Shay Vargaftik, 

Matty Kadosh, Lalith Suresh, and Muhammad Shahbaz

• We test our hypothesis by looking at the All-Reduce step-times for our proposed vs state-of-the-art collective algorithms. 
We then drop the tail of a distributed deep learning job and witness its effect on speed-up and accuracy.

• The evaluations are performed in Nvidia's HPC environment, with 128 GPU nodes on a workload of ResNet50 with ImageNet.

Email: ewarraic@purdue.edu

a. Tail in all-reduce algorithms b. Tail-drop vs accuracy c. Tail-drop vs speed-up

n6

n4

n3

n2n1

n5

1. Transpose All-Reduce
We proposes Transpose 
All-Reduce as the collective 
algorithm in our system 
which offers a fixed O(1) 
hops per all-reduce call. 
This not only helps in 
avoiding the tail, but also 
enables our system to avoid 
cumulative losses.

4. Native Multicast
Using lossy transport,

we are able to do native 
multicast in our system 

which reduces the 
number of copies needed 

to be sent out in the 
network.

2. Dynamic Timeouts
Adaptive timeouts are 
used to time-bound

every training step and 
get rid of stragglers.

5. Hadamard transform
We send out encoded 
gradients every all-reduce 
call to help evenly spread 
any losses occurred 
among the gradient 
layers.

3. Bounded Transport
Our design is motivated by 

allowing some losses in the 
all-reduce step, hence we opt 

for a lossy transport to get rid 
of re-transmissions and 

connections, eliminating a 
major cause of tail in the

system.


