

Constructing the Face of Network Data

Ertza Warraich, Muhammad Shahbaz

1. Problem Statement

- Network datasets are essential for operating, managing, and understanding ever-changing modern networks. However, such datasets are rare:
 - a) due to privacy and sensitivity concerns
 - b) and provisioned as feature sets instead of packet traces
- Having pre-selected features severely limits the application of datasets as they can only be used in a subset of Machine Learning systems. But feature extraction and selection is also a formidable undertaking requiring domain mastery of the dataset.

2. Approach

- We present a GAN based approach for the two problems:
 - a) generate new and timely datasets (packet traces) automatically
 - b) and find the key features to create face of network data

Dataset is generated in the following way:

- 1. Features extraction from input dataset
- 2. Feed the features to our **LSTM GAN** framework
- 3. GAN learns and generates new feature sets
- 4. Traffic w/ random bits is generated using those features
- 5. New dataset in packet capture format is output

To construct the face and find the most important features:

- 1. Extract **256 features** from input network dataset and transform them to an **image representation**
- 2. The features are fed to our custom **StyleGAN**
- 3. It outputs a grid of newly generated images
- 4. The most prominent pixels in the generated images identify what are the most important features of that dataset

3. Experimental Setup

- We test the quality of newly generated datasets by **applying** our framework to a well-known problem of censorship circumvention and traffic classification.
 - 1. We use a **Skype dataset** to train our GAN
 - 2. New Skype dataset is output from our framework
 - 3. The new dataset is passed through state-of-the-art **Skype traffic classifiers** and results are evaluated

<u>Model</u>	<u>Training Time</u>	<u>Accuracy</u>	<u>F1-Score</u>
Logistic Pogression	9.3 seconds	00.22%	1.00
Logistic Regression	9.3 Seconds	99.32%	0.99
Multi-Layer Perceptron	3.16 minutes	99.82%	1.00
Widiti-Layer Perception	3.16 minutes 99.82% 1.00	1.00	
V Nearest Neighbors	1 EQ minutos	1.58 minutes 99.95% 1.00 1.00	1.00
K-Nearest Neighbors	1.58 minutes		1.00
Decision Tree	4.1 seconds	4.1 seconds 00.06% 1.00	1.00
Decision free	4.1 seconds 99.96%	1.00	
AdaBoost	0 EQ minutos	0.58 minutes 99.96% 1.00 1.00	
Auaboost	0.58 minutes		1.00
Random Forest	4.7 seconds	99.99%	1.00
Random Forest 4.7 seconds	4.7 Seconds		1.00

Classifiers' accuracy on actual Skype dataset

4. Evaluation

• Almost all the **traffic passes through as Skype** in our experimental setup

<u>Model</u>	Classified as Skype	Classified as Other
Logistic Regression	100.0000%	0%
Multi-Layer Perceptron	100.0000%	0%
K-Nearest Neighbors	99.0396%	0.9604%
Decision Tree	99.1597%	0.8403%
Random Forest	100.0000%	0%
AdaBoost	100.0000%	0%

Classifying our framework's traffic

• We enhance and extrapolate a singular image from the grid generated by our StyleGAN to take a closer look at the face of network data and highlight the key features which make a network dataset unique from other datasets.

