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Abstract—
Universal Serial Bus (USB) is the de facto protocol supported

by peripherals and mobile devices, such as USB thumb drives
and smart phones. For many devices, USB Type-C ports are
the primary interface for charging, file transfer, audio, video,
etc. Accordingly, attackers have exploited different vulnerabilities
within USB stacks, compromising host machines via BadUSB
attacks or jailbreaking iPhones from USB connections. While
there exist fuzzing frameworks dedicated to USB vulnerability
discovery, all of them focus on USB host stacks and ignore
USB gadget stacks, which enable all the features within modern
peripherals and smart devices.

In this paper, we propose FUZZUSB, the first fuzzing frame-
work for the USB gadget stack within commodity OS kernels,
leveraging static analysis, symbolic execution, and stateful fuzzing.
FUZZUSB combines static analysis and symbolic execution to
extract internal state machines from USB gadget drivers, and uses
them to achieve state-guided fuzzing through multi-channel in-
puts. We have implemented FUZZUSB upon the syzkaller kernel
fuzzer and applied it to the most recent mainline Linux, Android,
and FreeBSD kernels. As a result, we have found 34 previously
unknown bugs within the Linux and Android kernels, and opened
8 CVEs. Furthermore, compared to the baseline, FUZZUSB has
also demonstrated different improvements, including 3× higher
code coverage, 50× improved bug-finding efficiency for Linux
USB gadget stacks, 2× higher code coverage for FreeBSD USB
gadget stacks, and reproducing known bugs that could not be
detected by the baseline fuzzers. We believe FUZZUSB provides
developers a powerful tool to thwart USB-related vulnerabilities
within modern devices and complete the current USB fuzzing
scope.

I. INTRODUCTION

Universal Serial Bus (USB) [1] is the de facto protocol for
a wide range of peripheral devices and smart devices such
as mice, keyboards, external Flash/SSD storages, GPU docks,
smart phones, tablets, etc. With the increasing adoption of
USB Type-C [2], we have seen laptops, smart phones, and
watches with only USB Type-C ports equipped for charging,
file transfer, audio, video, etc. While the prevalence and
versatility of USB have made our daily life convenient, it
has also attracted attackers seeking to exploit vulnerabilities
within the USB ecosystem. Traditional USB attacks use USB
storage devices to carry malware and break into the air-gap
environment, e.g., Stuxnet [3]. Modern USB attacks target
flaws within the USB specifications and stack implementations,
including injecting malicious USB functionality into USB

device firmware to compromise host machines in BadUSB
attacks [4] and exploiting USB connections to unlock screens
in Android [5] or jailbreak iPhones [6].

Meanwhile, fuzzing has become a popular runtime testing
method, given its effective bug-finding capabilities. Fuzzing
has been used successfully in various domains [7–13] to reveal
large numbers of bugs. For instance, a number of fuzzers have
been proposed for the USB domain, ranging from hardware
fuzzers to pure software-based fuzzers [14–19]. These tools
have already helped detect real-world USB vulnerabilities. For
example, the state-of-the-art kernel fuzzer syzkaller has been
extended to support USB fuzzing, and found over 100 bugs
within the Linux kernel USB subsystem [20].

Currently, all existing USB fuzzing efforts assume that threats
stem from malicious USB peripherals, and therefore focus on
defending host machines from peripheral-based attacks by
fuzzing the USB host stack. However, modern devices such
as smart phones and tablets often contain another USB stack –
the USB gadget stack, which is used to support well-known
functionalities including charging, mass storage, tethering,
MIDI, PTP/MTP, etc. For instance, the Linux USB gadget
stack is used to support billions of embedded systems and
Android devices. Unfortunately, no existing fuzzing framework
is able to detect vulnerabilities within the USB gadget stack.

In addition, existing works do not fully consider the state-
fulness and limit input space of the USB protocol (i.e., single-
channel fuzzing for USB host stacks). As a result, existing
works either suffer from detecting only shallow bugs without
being able to find deeper bugs (e.g., data communication only
occurring after USB enumeration) [17, 18] or require significant
manual efforts to enable stateful fuzzing [16]. For this reason,
most of the USB bugs (e.g., reported by syzkaller) are within
driver initialization functions rather than getting into the core
USB logic [14, 20]. While syzkaller can fuzz many different
USB host drivers (by testing different vendor IDs and product
IDs), it does not try to explore the different states a specific
driver can reach. Consequently, the inputs it produces are
unlikely to reach deep code locations related to a driver’s core
logic.

To address the limitations of existing USB fuzzing ap-
proaches, in this paper, we propose FUZZUSB, the first stateful
USB fuzzer targeting the Linux and FreeBSD USB gadget



stacks. Unlike typical USB host fuzzers that mainly accept
mutation inputs from USB peripherals, FUZZUSB enables
multi-channel input mutations to reach different parts of USB
gadget code based on the statefulness of USB communications.
Furthermore, we consider the stateful behavior of different
USB gadget functionality, For that, FUZZUSB leverages
static analysis and symbolic execution to extract internal state
machines of each USB gadget driver and uses them to guide
fuzzing, unlike the previous work which simply relies on
selective symbolic execution to guide fuzzing [12]. Furthermore,
FUZZUSB allows for state coverage and transition coverage as
feedback, in addition to the classic code coverage, as well as
different mutation rules to support different fuzzing strategies.

We have implemented FUZZUSB by rearchitecting and
customizing syzkaller [16], evaluated it on the latest Linux,
Android, and FreeBSD kernels, and discovered 34 previously
unknown vulnerabilities with 8 CVEs assigned. Compared
to the baseline gadget fuzzer we implemented following a
straw-man approach without multi-channel input mutation or
state awareness, FUZZUSB exhibits multiple improvements
of USB fuzzing, including 3× higher code coverage, 50×
improved bug-finding efficiency for Linux gadget stacks, 2×
improved bug-finding efficiency for FreeBSD gadget stacks,
and reproducing known bugs that could not be detected by
the baseline fuzzers. We have reported all our findings to the
corresponding parties, and open-source FUZZUSB to facilitate
USB security research in the community [21].

The key contributions of this paper are as follows.
• Unlike exiting USB fuzzing tools, FUZZUSB is the first

USB fuzzing framework targeting the USB gadget stack,
supporting both multi-channel input mutations and state-
guided fuzzing.

• We combine both static analysis and symbolic execution
to design an algorithm to extract internal state machines
from different USB gadget drivers automatically, which
are used by FUZZUSB to achieve stateful fuzzing.

• We have applied FUZZUSB to the most recent Linux
kernel and Android kernels and discovered 34 previously
unknown vulnerabilities with 8 CVEs assigned. Compared
with the baseline, FUZZUSB has demonstrated multiple
improvements of USB fuzzing, including 3× higher code
coverage, 50× improved bug-finding efficiency for Linux
gadget stacks, 2× improved bug-finding efficiency for
FreeBSD gadget stacks, and reproducing known bugs that
could not be detected by the baseline fuzzers.

II. BACKGROUND

USB is a master-slave protocol where a USB host connects
with at least one USB peripheral. A host usually refers to a
desktop or a laptop in the master role and controlling connected
peripherals. A peripheral could be a USB keyboard, a USB
thumb drive, or even an Android phone, acting in the slave
role within the USB communication and accepting a host’s
commands. Although supporting the same USB specifications,
a USB stack implementation within a host is different from

the one within a peripheral. The former is called the USB host
stack, and the latter is named the USB gadget stack.1

Compared to the typical USB peripherals, USB smart
devices (such as smartphones and tablets) are usually equipped
with USB device controllers having either the On-The-Go
(OTG) [22] or the Dual-Role-Device (DRD) [23] capabilities.
These features enable them to behave as both a USB host
and a USB peripheral depending on different usage scenarios.
For instance, when a USB keyboard is connected to an
Android phone, the Android phone acts as a USB host.
However, when the same Android phone connects to a laptop
to transfers pictures, the phone acts as a USB peripheral.
Accordingly, these USB smart devices contain two different
USB stack implementations to achieve different roles during
USB communication.

Kernel 
space

USB Device Controller (UDC)

User 
space

UDC Driver
Gadget Core

CDC HID …MSC
ConfigFS

Gadget Applications

USB Host 
Machine
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Smart 
Device

Fig. 1: USB gadget stack within a USB smart device, e.g., Android
phones, connected with a USB host machine, e.g., a desktop. The
USB gadget stack includes the gadget core, different USB gadget
drivers such as CDC, HID, MSC, etc., and the corresponding ConfigFS
filesystem.

A. USB Gadget Stack

Figure 1 shows an example of a smart device using the USB
gadget stack within the Linux kernel. At the bottom is the
USB device controller (UDC) providing the USB physical layer
supporting either OTG or DRD. A corresponding UDC kernel
driver, e.g., fsl_usb2, is usually needed to communicate
with UDC, e.g., Freescale Highspeed USB Dual-Role Device
Controller. The gadget core sits right above the UDC driver
exposing APIs to a variety of USB gadget drivers, which im-
plements different USB functionality instantiated via the UDC
hardware. Example gadget drivers include Communication
Data Class (CDC) [24] (for data communication functionality,
like a modem), Human Interface Device (HID) [25] (for
input functionality, like a keyboard), and Mass Storage Class
(MSC) [26] (for storage functionality, like a USB thumb drive).
The ConfigFS [27] filesystem lies above all the USB gadget
drivers allowing specific user-space applications to configure
the USB smart device with one or more classes of USB
functionality. For Android devices, this usually refers to the
USB configuration menu to change the setting of the phone,
e.g., charging or Media Transfer Protocol (MTP).

In general, between a USB host machine and a USB smart
device using the USB gadget stack, the USB connection and
communication workflow includes three phases. In the first

1It is also called as USB peripheral stack or USB device stack in certain
documentations.
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phase, the configuration phase, an owner of the USB smart
device decides what USB functionality will be exposed to
the host machine by running the corresponding user-space
gadget application, setting the expected device information
(e.g., VID/PID) by writing into ConfigFS, and triggering the
corresponding gadget driver (e.g., HID) to instantiate the
functionality using the UDC hardware. For instance, USB
tethering will activate the CDC USB gadget driver and turn
smart phone into a USB modem.

Once the USB smart device is plugged into the USB host
machine, the second phase, the enumeration phase, starts.
This phase consists of a standard procedure defined by the
USB specification to retrieve the device information from the
remote device in the format of “descriptors”. Following the
previous example, the USB host machine sends out different
“GetDescriptor” USB requests to the USB smart device, which
in turn responds with all the information needed for the USB
host to recognize a connected USB modem.

Finally, the USB host loads the matching device driver within
the host operating system to enable the USB smart device’s
specific USB gadget functionality in the communication phase.
Continuing the example, the host might load the CDC USB host
driver to serve the USB modem as a typical USB peripheral,
allowing the host to connect to the Internet using the USB
smart device.

Bugs in either USB host stacks or USB gadget stacks could
have critical security implications. Since USB stacks usually
run in the kernel space, any vulnerabilities within these stacks
could lead to privilege escalation or arbitrary code execution,
compromising the whole system. Meanwhile, USB gadget
stacks expose larger attack surfaces compared to USB host
stacks. For instance, USB host stacks usually only need to
consider malicious inputs from USB peripherals. In contrast,
a malicious app with USB permissions could reconfigure the
USB gadget functionality at any time from the user space; an
untrusted host machine could send out malformed USB packets
to USB gadget stacks from the kernel space. The local app
and the remote host could even conspire together against the
USB gadget stack, as we will show later in the paper. Due to
the wide adoption of mobile and IoT devices, a vulnerability
within USB gadget stacks could impact the security of billions
of devices in use, and thus it is usually rated as “high” severity.

B. Security Model

In this paper, we assume that all hardware within a USB
smart device is trusted including the UDC. We also trust the
code running in the kernel space (or privileged mode) within
the USB smart device, where a USB gadget stack usually
resides, such as the Linux kernel USB gadget stack. Taking an
Android device as a concrete example, we trust the System-
on-Chip (SoC) device and the Linux kernel running within
Android.

We assume two different forms of adversaries. First, a
malicious gadget application running in the user space of
the USB smart device may exploit the ConfigFS interface to
reach any internal vulnerabilities within the USB gadget stack

Technique Fuzz Fuzz Fuzz Device State
Target Scope Chan Dep Mach

FaceDancer [19] host E only device HW N
POTUS [15] host C only host SW N
vUSBf [17] host E only device SW N
umap2 [18] host E only device Hybrid N
syzkaller [16] host E (C partially) device SW N
USBFuzz [14] host E (C partially) device SW N

FUZZUSB gadget E+C+CC host+device SW Y

TABLE I: State-of-the-art USB fuzzers. E and C represent the
enumeration and communication phases respectively while CC
denotes the configuration phase. HW represents the need for dedicated
hardware; SW relies on software only; Hybrid means supporting both
HW and SW.

(i.e., a top-down approach). Second, a malicious USB host
device may send out malformed or malicious USB packets to
exploit the USB gadget stack of the USB smart device (i.e., a
bottom-up approach).

Following the Android example, a malicious Android app
may try to exploit the USB gadget stack running inside the
kernel space to achieve privilege escalation, while a malicious
desktop device may send out malicious USB packets to steal
secret information from the attached device without a user’s
permission. It is also possible for adversaries to leverage both
exploitation directions together to enable more sophisticated
attacks, as shown in the PoC exploit in Appendix C.

III. MOTIVATION

Modern peripherals and smart devices have been a popular
target of recent attacks. Within the large attack surface of these
devices, the USB gadget stack is a valuable and high-profile
target for the following reasons. First, since the USB gadget
stack supports versatile USB features as discussed in §II, it
offers prevalence and large attack surfaces — ranging from
charging and storage to MIDI, etc. Second, the USB gadget
stack usually runs with high privilege (i.e., the kernel privilege).
Lastly, such attacks can be carried out with zero privilege on
the victim device. In other words, unlike typical privilege
escalation attacks, attacks targeting a USB gadget stack usually
do not assume a specific prior requirement, such as providing
the right passcode or installing a custom malicious application.
Instead, simply connecting a USB cable to the USB smart
device satisfies all the attack requirements.

Surprisingly, despite the prevalence and large attack surface
of the USB gadget stack, we found that little attention has
been paid to this area especially in terms of fuzzing. Table I
summarizes existing USB fuzzing tools, all of which focus on
USB host stack fuzzing and assume a malicious USB peripheral
trying to exploit vulnerabilities within a host using a USB
connection. These fuzzers usually have limited coverage in
handling the three phases of USB workflows. In particular, they
usually target one single phase of USB communication (e.g.,
enumeration), mutating the input used by a single channel.
In addition, some fuzzers, such as FaceDancer [19] and
umap2 [18], require dedicated programmable USB hardware
to generate malformed USB packets, limiting their scalability.
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Configuration Enumeration Data communication

Init (Ch1)
Connect (Ch2)
Comm (Ch3,Ch4)
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Channel

Fig. 2: Usage of the different USB gadget communication channels
in a standard USB connection.

A naive approach to fuzz USB gadget stacks would be using
existing fuzzers (e.g., usb-syzkaller) and switching the fuzzing
direction from gadget-to-host to host-to-gadget.2. However,
such an approach is unlikely to achieve significant code
coverage or find bugs efficiently. In fact, as we will show
in the rest of this section, to achieve both a wide breadth (e.g.,
fuzzing different phases) and a high depth (e.g., reaching deep
USB core-logic code) in USB gadget stacks, a fuzzer has to
tackle fundamental challenges that are specific to both the
protocol design and the stack implementation.

Compared with the existing works, to the best of our knowl-
edge, FUZZUSB is the first USB gadget stack stateful fuzzing
framework, covering all three phases of USB connection and
communication, and relying on software emulation to achieve
bug reproducibility and scalability.

A. Challenge 1: Multi-channel Inputs

As mentioned earlier and shown in Figure 2, there are
three phases involved in the lifetime of a USB gadget driver:
configuration, enumeration, and communication. Accordingly,
each phase has its own input space and dedicated USB
endpoints for data transfer. These endpoints are the basic
communication units defined by the USB specification, and
they are indexed by numbers (e.g., endpoint 0). In the rest of
this paper, we call them input channels. As shown in Figure 2,
there are three input channels, init, control, and data, which
are used in different phases.

The init channel (Ch1) refers to the ConfigFS interface
exposed to gadget applications, providing the USB device
information to instantiate the corresponding USB product
(functionality), using the UDC during the configuration phase.
The control channel (Ch2) represents the USB control transfer,
using endpoint 0 during the enumeration phase. The data
channel (Ch3, Ch4, etc.) groups all the possible USB data
transfers using different endpoints during the communication
phase, after a USB connection is established. Note that the data
channel could contain multiple sub-channels for data transfer
depending on the complexity of the USB functionality exposed
by a device. For instance, a USB headset might contain 3 data
transfer sub-channels, one for the microphone, one for the
speakers, and one for volume control.

It is noteworthy that we need to carefully address these
multi-channel inputs across different phases, in terms of the
mutation strategy used for USB gadget fuzzing. For example,
mutating the data channel during the enumeration phase would

2We will compare FUZZUSB with this naive approach as the baseline in
our evaluation.
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Fig. 3: Standard message exchange during the configuration and
enumeration phases. Circles in color represent feasible gadget states
along with their transitions.

only waste computing resources due to the inactivity of the
communication phase. Similarly, even though both the init
and control channels are available during the communication
phase, mutating the control channel to trigger a new USB
enumeration process might not be desired for fuzzing, since
it breaks the current USB connection while mutating the init
channel could trigger race conditions among different parts of
gadget driver code as we will see later. As a result, when to
fuzz each channel and how to mutate the input targeting each
channel determine the effectiveness and efficiency of fuzzing
the USB gadget stack.

Unfortunately, existing fuzzing techniques hardly tackle these
essential issues. As shown in Table I, state-of-the-art USB
host stack fuzzing only considers single-channel input, e.g.,
the device channel, since USB host stacks are usually not
configurable from the user space, and the system call interface
is too generic to fuzz USB host stacks directly. Similarly,
USB host stack fuzzers focus on a specific phase, e.g., the
enumeration phase, aiming at triggering bugs from different
USB device drivers rather than detecting deep bugs within a
driver. As we will discuss in §IV, we maximize the effectiveness
and efficiency of USB gadget stack fuzzing by considering
multi-channel inputs using a proper mutation strategy, based
on the current phase and state of the driver.

B. Challenge 2: Statefulness

In addition to the multiple phases of the USB communication,
each USB gadget driver also implements a fine-grained state
machine internally. Figure 3 illustrates the standard message
exchanges from the perspective of gadget drivers during
the configuration and enumeration phases. To configure the
functionality of a USB gadget, a user-mode configuration
process (e.g., a gadget-specific application) within the USB
smart device delivers a sequence of setup data to the driver in an
ordered way up until binding. In the following enumeration, the
USB host communicates with the gadget driver and maintains
states internally via exchanging different messages (USB
requests and responses) in a specific order. While each gadget
driver follows the same state changes within the first two
phases, different gadgets implement different state machines
for the communication phase.
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1 /* accept a SCSI command */
2 int get_next_cmd(struct fsg_common *com) {
3 ...
4 // wait for SCSI command from the host
5 recv_data_from_host (com->buf, ..) // Ch3: transition point
6 ...
7 // check validity of the received SCSI command
8 if (com->buf->cmd_size != BULK_CB_WRAP_LEN ||
9 com->buf->signature != BULK_CB_SIGN)

10 return -1;
11 ...
12 }
13 /* handle the SCSI command */
14 int do_scsi_cmd(struct fsg_common *com) {
15 ...
16 // process received SCSI command
17 if (com->buf->cmd == WRITE) {
18 // wait for actual data payload from the host
19 recv_data_from_host (com->buf, ..) // Ch3: transition point
20 ...
21 // write the received data into backing store
22 kernel_write(buf)
23 }
24 else if (com->buf->cmd == READ) {
25 // read the data from backing store
26 kernel_read (buf)
27 ...
28 // send the data to the host, and expect valid ack
29 send_data_to_host (buf, ..) // Ch3: transition point
30 if (fail to receive ack)
31 return -1;
32 }
33 ...
34 }
35 /* SCSI command handling function in mass storage gadget */
36 while (...) {
37 if (get_next_cmd(com))
38 continue;
39 if (do_scsi_cmd(com))
40 continue;
41 ...
42 }

Fig. 4: Simplified code used by the mass storage gadget.

Example: mass storage gadget driver. Figure 4 presents a
simplified example of Small Computer System Interface (SCSI)
communication, within the mass storage class (MSC) gadget
driver. In this example, the gadget enters a loop and waits for
a SCSI command from the host (line 35). Once received, it
performs validity checks in get_next_cmd(), and then it
starts to process the command message (line 37). Depending
on the received SCSI command, the gadget might need to
receive the following payload from the host, which could be
data to be stored into the storage system afterward (line 17-23),
or send data from the storage to the host (line 24-30).

Figure 5 depicts the corresponding state machine. According
to the state machine, a sequence of state transitions can lead the
exploration to deeper code locations (in the example, lines 22
and 29). To visit all the states present in the state machine, the
host needs to feed different state-specific values to trigger
the different state transitions. Without considering such a
statefulness of the gadget driver, random input from the host
side is unlikely to reach further states, causing the execution to
terminate early (e.g., line 10). As a result, how to extract the
internal state machines within each gadget driver correctly and
in a scalable fashion and how to leverage these state machines
to achieve stateful fuzzing determine the effectiveness and
efficiency of fuzzing the USB gadget stack.

Unfortunately, existing fuzzing techniques hardly tackle the
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Fig. 5: Partial gadget state machine for the SCSI communication.
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statefulness of USB device drivers. As shown in Table I, most of
the existing solutions do not consider the internal state machines
within USB device drivers, due to either covering only one
phase (e.g., enumeration) or having incomplete support for the
communication phase. For the same reason, the state-of-the-art
USB fuzzer [16], although having reported more than 100
bugs, can only find shallow bugs. In fact, most of the bugs it
found are located in the driver initialization code [14, 20]. For
instance, syzkaller is mostly based on pre-defined templates,
which are manually written by domain experts replicating USB
communications. This is a common approach to addressing
stateful communication. However, manually written templates
are neither generic nor scalable to cover a variety of internal
state machines implemented by USB gadget stacks. As we will
discuss in §IV, we maximize the effectiveness and efficiency
of USB gadget stack fuzzing by guiding the fuzzer using
new state-coverage and transition-coverage feedbacks, besides
the typical code-coverage. To provide such new feedbacks,
FUZZUSB automatically extracts internal state machines using
static analysis and symbolic execution from each gadget driver.
Note that the stateful fuzzing technique developed here is
generic and can be applied to USB host stack fuzzing as well.

IV. DESIGN

To tackle the challenges of USB gadget fuzzing discussed
in §III, we design FUZZUSB to support multi-channel input
mutations and state-guided fuzzing targeting the USB gadget
stack. In this section, we outline the overall design and
workflow of FUZZUSB, and explain its key components in
detail.

A. Approach Overview

Figure 6 depicts an overview of FUZZUSB. The inputs of
FUZZUSB are USB gadget drivers within OS kernels (e.g.,
Linux kernel). FUZZUSB conducts both static and symbolic
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analysis to extract internal state machines automatically from
the source code of the gadget drivers (§IV-B). Static analysis
not only finds program locations controlling the internal
state machines of the drivers, but also facilitates the path
prioritization of symbolic execution to avoid path explosion.
After this step, symbolic execution follows the execution paths
prioritized by the static analysis and extracts the internal state
machines representing the functionality and behavior of the
gadget drivers.

In its runtime module, FUZZUSB takes the extracted state
machines and mutation rules as inputs to generate state-
aware fuzzing inputs. The mutation rules guide a fuzzer to
mutate inputs towards desired state transitions, and provide
the flexibility to tune the mutation strategy as needed (§IV-C).
During fuzzing, FUZZUSB further orchestrates the mutation
generation and distribution to the multiple input channels
(§IV-D). Meanwhile, coverage information, i.e., both the code
coverage and the state coverage, is fed back to FUZZUSB
driving mutations to generate the next-round fuzzing input
(§IV-E).

B. Building State Machines

To realize state-guided fuzzing, we adopt the finite state
machine (FSM) approach as the state representation. Instead of
relying on system call dependencies (e.g., open-then-write)
to infer the driver state (as implemented in related work [8–
10, 28, 29]), we use a state machine, explicitly representing
the possible internal states of the target programs (i.e., gadget
code). This approach allows a fuzzer to know available states
and transitions ahead of time and trigger state changes directly.
In particular, our state machine helps the fuzzer figure out
what to fuzz in a given state and how to transition from one
state to another. To this end, we first introduce the definition
of states and transitions in the context of USB gadget drivers.
Next, we explain how we extract internal state machines from
USB gadget drivers automatically by combining static analysis
and symbolic execution.

1) States and Transitions: As discussed in §III-B, the
effectiveness of stateful fuzzing depends on how well and
faithfully we extract states and transitions from gadget code,
which contains multiple receive and send operations
reading from and writing to channels. We define a new state
for each code line in which one of these I/O operations (either
receive or send) is executed. Considering the example in
Figure 4, they have three states, corresponding to the I/O
operations happening at lines 5, 19, and 29. We then consider
the gadget to be in a specific state based on the last I/O
operation performed. Moreover, every time a new I/O operation
is performed, we consider the gadget state transitioning from
the current state to the state corresponding to the latest I/O
operation executed. For instance, in Figure 4, after line 5 is
executed, the gadget will transition to the next state. If line 19
is later executed, the gadget will transition to another state.

We call such an I/O operation a transition point. Based
on our observation, transition points are identifiable in a
generic way as they rely on standard USB gadget APIs (e.g.,

usb_ep_queue()) provided by the underlying USB gadget
core subsystem in the OS kernels [30]. Moreover, all the
gadgets follow the standard USB protocol for the first two
communication phases (i.e., configuration and enumeration),
thus sharing the same states and transitions. In the data com-
munication phase, however, different gadget drivers implement
different functionality (e.g., mass storage in §III), resulting in
different states and transitions, and essentially different state
machines.

2) State Machine Construction: Based on the insight above,
we construct a state machine for each gadget, as described in
Algorithm 1. At a high level, we follow a two-stage program
analysis technique, including static and symbolic analysis, to
obtain input values that trigger specific state transitions during
fuzzing.

Static analysis. As the first step, FUZZUSB shortlists a
number of code paths changing states, aiming at scaling the
symbolic execution in the following step. To this aim, FUZ-
ZUSB performs static inter-procedural backward slicing [31].
In the gadget code, we keep track of all of the transition
function calls, which are standard Linux USB gadget APIs
(e.g., usb_ep_queue()). Given a USB gadget driver, we
find out where a transition function is used, i.e., transition
points (line 2 in Algorithm 1). From each transition point,
FUZZUSB performs slicing in a backward direction along with
the data- and control- dependent paths, until reaching the entry
points of the gadget, which are usually dispatcher functions
for input channels (line 3). We repeat this for all transition
points, optimizing and leaving only execution paths that can
lead to transitions. The result of the sliced driver is used as
the target code for the next step of the analysis.

Symbolic analysis. To identify concrete fuzzing input values
triggering transitions across states, we employ symbolic execu-
tion on the sliced gadget code. Our symbolic analysis attempts
to obtain concrete input values to reach the transition points
from either entry points or different transition points. Since
gadget drivers may have multiple entry points due to multiple
input channels, we carry out symbolic execution per entry
point (lines 5-19). We first symbolically taint memory buffers
that are controllable by input, then iterate over instructions
from an entry point function. Meanwhile, we keep collecting
path constraints and updating symbolic states. When reaching
a transition point, we retrieve concrete values by solving the
collected symbolic constraints (line 13). We use these values
as a concrete input to trigger a transition between the current
and next state according to the state machine of the gadget.
After refreshing (removing) the constraints that have been used,
we restart the symbolic execution from that transition point as
a new starting point of the execution (line 18). We repeat the
process every time the execution encounters a new transition
point and terminate at the end of the entry point function.

In Figure 4, for example, the symbolic execution starts over
when reaching a transition point at line 5 in get_next_-
cmd(), with new symbolic-tainted memory buffer com->buf.
Along the path, the execution can reach another transition point
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Path Start End Data Channel

1 line 5 line 19 WRITE (cmd) Ch3
2 line 19 - Payload Ch3
3 line 5 line 29 READ (cmd) Ch3
4 line 29 - Ack Ch3

TABLE II: Result example of the symbolic analysis.
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Fig. 7: State merging for mass storage gadget.

at line 19 in do_scsi_cmd(). We obtain the concrete values
by solving the constraints com->buf->cmd == WRITE,
which can lead to a state transition from the starting point (line
5) to another transition point (line 19). Table II summarizes
the result of symbolic analysis for the example code, listing
all feasible paths leading to possible state transitions.

State merging. Putting together all the collected results from
the prior analysis, we finalize the state machine construction.
We now have a set of partial state machines (i.e., Sp in
Algorithm 1) from the symbolic execution results — for each
execution of symbolic analysis, its start point and end point
become an entry state and an end state respectively in a new
partial state machine (lines 23-27 in Algorithm 1). At the same
time, the concrete input values would become a transition
trigger between the two states (line 28). By merging the same
states (i.e., the end state of a state machine merges with the
corresponding entry state of another), we connect all the partial
state machines together. Repeating this procedure, we build a
definitive state machine of the gadget (i.e., S).

Figure 7 illustrates the state merging for the motivating
example in Figure 4. In each partial state machine, both
states correspond to transition points, and the transition values
stem from constraint solving. We connect all the partial state
machines via merging the overlapping states while maintaining
their transition values, building a final state machine.

In Figure 8, we take the loopback gadget as another
case. In the example, the gadget simply sends the received
data back to the host, then waits for another data. Using the
generated state machines, we can first pinpoint both transition
and entry points explicitly in the code. Next, we directly track
the relationship between two relevant transitions and retrieve
two states accordingly. Finally, FUZZUSB generates a finite
state machine, i.e., State1–(Ch3:data-IN)–> State2 –(Ch3:data-
OUT)–> State1 .... Note that in each state, the host needs
to feed appropriate inputs in the right order to transition to
the next state. In this way, our static analysis makes the state
machine construction automated and more scalable.

Algorithm 1 State Machine Construction.
Input: G - target gadget code
Input: TF - transition function
1: function STATICANAL (G, TF)
2: EP, TP ← Scanning (G) // scan all entry and transition points
3: Gs ← Slicing (G, EP, TP)
4: return EP, TP, Gs

5: function SYMBOLICANAL (EP, TP, Gs)
6: VP ← {} // initialize list of visited points
7: Sp ← {} // initialize a set of partial state machines
8: W ← {} // initialize worklist
9: W.push(EP)

10: while W ̸= ∅ do
11: Pstart ← W.pop()
12: // do symbolic execution until termination or TP
13: list of {Pend, V} ← SymExec(Pstart, TP)
14: for each {Pend, V} in list of {Pend, V} do
15: Sp = Sp ∪ {Pstart, Pend, V}
16: if Pend ̸∈ VP then
17: VP = VP ∪ Pend

18: W.push(Pend)
19: return Sp

20: function STATEMERGE (Sp)
21: VP ← {}
22: S ← {} // initialize a state machine
23: for each {Pstart, Pend, V} in Sp do
24: for each P in {Pstart, Pend} do
25: if P ̸∈ VP then
26: VP = VP ∪ P
27: AddState(P, S)
28: AddTransition(V, Pstart, Pend, S)
29: return S

30: // entry point: global function calls
31: EP, TP, Gs ← STATICANAL (G, TF)
32: Sp ← SYMBOLICANAL (EP, TP, Gs)
33: S ← STATEMERGE (Sp)
34: return S
Output: S - a gadget state machine

1 /* entry point for data-IN */
2 int entry_IN() {
3 // request the host for data-OUT
4 request_to_host (OUT, ..) // Ch3: transition point
5 }
6 /* entry point for data-OUT*/
7 int entry_OUT() {
8 // request the host for data-IN
9 request_to_host (IN, ..) // Ch3: transition point

10 }

Fig. 8: Simplied loopback gadget code.

C. Mutation Rules

Although a state transition guided by the state machine could
lead to an actual state transition at runtime as intended, such a
transition may fail in reality due to non-deterministic factors,
such as interrupts, and states of uncontrollable global objects
inside the kernel. We tackle this issue by allowing users to
define additional options to respond to such failures using the
mutation rules.

To facilitate a state-guided fuzzing, FUZZUSB provides a
list of mutation rules to establish a detailed strategy for state-
guided mutation, such as dictating state transition towards a
targeted destination or accommodating a specific gadget testing
requirement. Table III outlines the rules for stateful fuzzing, i.e.,
1) transition interval, 2) coverage guidance, 3) next state target,
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Rule Description

R1: Transition interval period of time between two transitions
R2: Coverage guidance state-, or transition-coverage
R3: Next state target what to choose for next state
R4: Transition failure handling reconnect or try again

TABLE III: Mutation rules.

and 4) transition failure handling. R1 specifies the transition
interval between two connected states. Users can set a time
value if they want to fuzz USB gadget stacks in each state
for the given amount of time before moving forward to a next
state. R2 determines the method of coverage guidance, i.e.,
either state- or transition-based coverage, as we will explain
later in §IV-E. R3 prioritizes the next target state (or transition,
depending on R2) out of multiple candidates (if there are
multiple states connected to the current state), allowing random
choice or unexplored states first. As a transition may fail for
reasons, R4 defines how to address such a transition failure,
e.g., trying again for a given period of time or closing the
entire connection immediately and starting over. Note that it is
possible to adjust the granularity (fine- or coarse-grained) of
the rules or extend them for other purposes, such as supporting
certain algorithms for state exploration (e.g., DFS/BFS), as
we will discuss in §VII. At runtime, the defined rules will be
passed to the fuzzer determining state-aware input mutation.

D. Multi-channel Fuzzing

As mentioned in §III-A, gadget drivers accept multiple inputs
from different channels at the same time; thus, if a fuzzer does
not consider the roles of different channels (e.g., random input
fuzzers), it is unlikely to achieve high efficiency. FUZZUSB
orchestrates the entire execution of the fuzzing campaign based
on the gadget state — not only steering input mutation but
also distributing inputs into appropriate input channels. To
this end, we rely on gadget state machines (§IV-B) along
with mutation rules (§IV-C). In addition to mutation for state
changes, FUZZUSB exercises a generic mutation guided by
code coverage information within a state. To be effective, we
leverage the results of solved constraints (from prior symbolic
analysis) as input sources, which can help the fuzzer tackle
strong branch conditions [9, 12, 32].

To elaborate on how our state-aware mutation operates, we
step through the input generation procedure using the given
state machine and mutation rule presented in Table IV. While
state machines determine gadget-specific transitions in each
state, mutation rules provide gadget-independent transition
strategies. When reaching a new state — for instance, S2 in
the current state (Cur) —, the fuzzer decides when to trigger
a transition (towards the next state) depending on the mutation
rule R1. Accordingly, a transition will occur in three seconds,
and the fuzzer will ask for the next state by referring to R3 (the
next target) and R2 (coverage guidance). Suppose S5 has been
explored already while S3 has not yet. Then, the fuzzer takes T1

for the transition to trigger and chooses S3 (in Next) as the next
state. Subsequently, it retrieves the corresponding transition

Cur Next Transition

T1: S2 S3 Ch4: write-keycode
T2: S3 S4 Ch3: read-keycode
T3: S2 S5 Ch4: read-keycode

...

Mutation Rule

R1: 3 sec interval
R2: state-coverage
R3: unexplored first
R4: reconnect

TABLE IV: A simplified state machine for the HID gadget (left) along
with the mutation rule (right). TX and SX denote unique transitions
and states. Cur represents the current state, and Next means the next
state to be transitioned. Transition specifies input values (along with a
relevant input channel) needed to trigger the corresponding transition.

values for the input (i.e., write-keycode in Transition)
from T1 and feeds them into the designated channel Ch4. If
the transition fails, the fuzzer reacts based on the transition
failure option described in R4 and takes action (i.e., reconnect)
accordingly. While staying within a state, the fuzzer performs
a mutation guided by code coverage, similar to a general
coverage-guided fuzzer.

E. State Coverage vs. Transition Coverage

To maximize the benefit from the stateful approach, we
define two coverage metrics with respect to gadget states,
state coverage and transition coverage, which are similar to
block coverage and edge coverage used for code coverage
representation. While the state coverage aims at visiting
all presented states in state machines regardless of their
transitions, the transition coverage attempts to reach all unique
state transitions. The state coverage generally works well
for unidirectional state machines. Since our state machines
are directional, two transitions with opposite directions but
connecting the same two states are considered distinct. The
transition coverage fits better for our case. Nevertheless, as
either metric can work for its own purpose, FUZZUSB allows
users to choose a preferred one in the mutation rule.

V. IMPLEMENTATION

We implemented FUZZUSB prototype atop the syzkaller
kernel fuzzer [16]. We customized its components to make it
suitable for gadget stack fuzzing while piggybacking on the
underlying functionalities of syzkaller, such as code coverage
guided mutation. Specifically, we extended the mutation engine
to deploy our state-aware mutation along with state machines
and support multi-channel input distribution. To enable and
tune the init channel Ch1, we employ ConfigFS interface [27],
allowing user-space code to configure various USB gadgets
from the gadget side. To feed inputs from the host, we devise a
dummy host driver on top of the usbtest kernel module and
use the dummy_udc module for the software bridge between
the host and device with the absence of a physical connection.
Our state machine construction, i.e., static slicing and symbolic
execution, relies on dg llvm slicer [33] with slicing criteria
upon transition points and KLEE [34] (with Z3 solver [35]),
which are all based on LLVM [36]. We customize KCOV [37]
to collect code coverage from kernel threads regardless of
the corresponding user-space applications, while vulnerability
detection operates through KASan [38], UBSan [39], and
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Vendor Platform Device Android kernel

Google ACK∗ TBD† 5.4 (Android 12)
Samsung SM-G981U Galaxy S20 4.9
LG LMV600AM V60 ThinQ 4.19
Huawei ELS-AN10 P40 Pro 4.9

∗ Android Common Kernels
† At the time of submission, this device’s name has not been determined

yet.

TABLE V: Specification of Android kernels used for the experiment.

Kmemleak [40] enabled within the kernel. Table X summarizes
our efforts of modifying the tools used in FUZZUSB.

VI. EVALUATION

In this section, we evaluate FUZZUSB from different angles.
First of all, we show that FUZZUSB can find previously-
unknown bugs in USB gadget drivers, and we present a case
study about FUZZUSB’s findings (§VI-A). Then, we evaluate
how the multi-channel and statefulness features of FUZZUSB
contribute to its ability to cover USB gadget driver code
(§VI-B). Lastly, we describe the fuzzing experimental setup,
efficiency, and effectiveness for FreeBSD USB gadget fuzzing
(§VI-C). Note that we also evaluate the efficiency in finding
bugs (§A) and the state machine construction in Appendix
(§B).
Experimental setup. We perform all our evaluations on a
machine with an Intel Xeon E5-4655 2.50GHz CPU and 512
GB RAM running Ubuntu 16.04 LTS with Linux kernel 4.4.0.
We run total 32 virtual machines with KVM on this platform
to benefit from parallel fuzzing executions.
Mutation rules. We choose the best mutation ruleset that
yields the highest coverage growth for our testing dataset.
To obtain the best ruleset, we first performed a preliminary
experiment. Specifically, we tested all the 16 different rule
combinations by applying two options to each of the 4 mutation
rules defined in Table III. Then, we used the best ruleset as
the default in FUZZUSB for the rest of the evaluation. We
describe the details in §VI-B.
Target kernels and gadgets. We base our evaluation on
various gadgets from the latest Linux kernel versions (at the
time of the experiment), ranging from v5.5 to v5.8. We also
test Android gadgets (see §III) coming from different OEM
vendors (as shown in Table V), each of which has its unique
(or customized) vendor-specific gadgets. In total, our evaluation
is based on 28 gadgets (§B). After porting the Android gadgets
to the corresponding mainline kernels, we test all these gadgets
on a single testing platform. To run fuzzing in a single Linux
testing platform, we incorporated the Android USB gadgets
into our fuzzing system. Because Android kernels depend
completely on the Linux kernel, we are able to test all the
Android gadgets in a QEMU-based virtualized environment.
Furthermore, we extended FUZZUSB to cover USB gadget
stacks in FreeBSD. Of 10 gadgets in the mainline FreeBSD
kernel, we used 7 gadgets that implement the callbacks for
UDC drivers in our virtualized fuzzing environment.

Three gadget fuzzers. Since no USB gadget fuzzer is
available in the wild, we built a baseline fuzzer for com-
parison, G-fuzzer, which is also built on top of syzkaller.
Moreover, to highlight the two main features of FUZZUSB, i.e.,
multi-channel and stateful fuzzing, we incrementally enable
each feature in FuzzUSB-SL (SL: stateless) and FUZZUSB.
Table VI summarizes the specifications of the three fuzzers.
G-fuzzer is featured with code-coverage guidance and is

aware of the main interface to connect with gadget code, e.g.,
a USB host, but agnostic to advanced mutation strategies, such
as multi-channel and stateful fuzzing. G-fuzzer represents
a minimum engineering effort to turn syzkaller into a USB
gadget fuzzer. Note that in terms of fuzzing scope and
capability, G-fuzzer is at the same level of syzkaller [16]
and USBFuzz [14], but it focuses on the USB gadget stack
instead of the host stack. FuzzUSB-SL is capable of multi-
channel input mutations, but it is still state-agnostic. Lastly, in
FUZZUSB, all the features described in this paper are enabled.

Fuzzer Interface Code coverage Multi-channel State
-aware -guided inputs -guided

G-fuzzer ✓ ✓
FUZZUSB-SL ✓ ✓ ✓
FUZZUSB ✓ ✓ ✓ ✓

TABLE VI: Specification of baseline gadget fuzzers.

A. Bug Discovery

1) New Bug Finding: Based on the above testing envi-
ronment, we ran FUZZUSB extensively and discovered 34
previously unknown bugs (listed in Table VII). While 9 of
them were found within the Android gadgets, the remaining
21 bugs arose from the Linux gadgets. Although the majority
are gadget bugs, we also discovered 4 USB host bugs as a
by-product of the fuzzing. We have reported all the findings
to the corresponding parties, among which 27 were confirmed
by the community, 9 patched already, and 8 CVEs assigned.
The bugs detected stem from various memory errors, such as
use-after-free, null-pointer-deref, memory leakage, etc. These
bugs could affect the kernel in a severe way and lead to
exploitations, ranging from DoS attacks (§C-A) to control-flow
attacks (§C-B). Among the Android gadget bugs detected, we
notice that similar bugs could be detected from different OEM
vendors. For example, we discovered an accessory gadget bug
from the Google Android and then found a similar bug in
the Samsung Android gadget. This could happen when OEMs
derive their codebase from Google AOSP inheriting similar
bugs from the upstream code without big changes.

2) Case Study: Human Interface Device (HID) devices,
such as a keyboard and mouse, are used to interact with
humans. The corresponding HID gadget facilitates HID-specific
communications over USB. Figure 9 showcases simplified
buggy code found in the HID gadget, where an error arises due
to the race condition on the shared object hidg. Specifically,
f_hidg_read() waits for data from the host (line 6). After
it receives data from Ch3, a use-after-free crash may occur
when accessing hidg (line 9) because hidg may have been
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# Bug type Gadget Crash module Kernel Status CVE

1 Use-after-free (host) usb_hcd_unlink_urb (hcd.c) linux-5.5 Patched CVE-2020-12464
2 Slab-out-of-bounds common gadget_dev_desc_UDC_store (configfs.c) linux-5.6 Patched CVE-2020-13143
3 Integer overflow (host) k_ascii (keyboard.c) linux-5.6 Patched CVE-2020-13974
4 Memory leak (host) usbtest_probe (usbtest.c) linux-5.6 Patched CVE-2020-15393
5 Use-after-free printer printer_ioctl (f_printer.c) linux-5.6 Patched CVE-2020-27784
6 Use-after-free hid f_hidg_poll (f_hidg.c) linux-5.6 Confirmed
7 Use-after-free mass config_item_get (item.c) linux-5.6 Confirmed
8 Null-ptr-deref acm tty_wakeup (tty_io.c) linux-5.6 Confirmed
9 Memory leak (host) scsi_init_io (scsi_lib.c) linux-5.5 Reported
10 Use-after-free printer printer_read (f_printer.c) linux-5.6 Patched
11 Memory leak loopback usb_copy_descriptors (config.c) linux-5.6 Confirmed
12 Memory leak hid hidg_set_alt (f_hidg.c) linux-5.6 Confirmed
13 Use-after-free serial gs_flush_chars (u_serial.c) linux-5.7 Confirmed
14 Kernel panic hid usb_ep_queue (core.c) linux-5.6 Confirmed
15 Memory leak uac1 u_audio_start_playback (u_audio.c) linux-5.8 Confirmed
16 Use-after-free serial tty_init_dev (tty_io.c) linux-5.8 Confirmed
17 Use-after-free mass do_set_interface (f_mass_storage.c) linux-5.8 Confirmed
18 Deadlock tcm tcm_alloc (f_tcm.c) linux-5.8 Reported
19 Use-after-free hid f_hidg_read (f_hidg.c) linux-5.8 Confirmed
20 Kernel panic mass usb_composite_setup_continue (composite.c) linux-5.8 Confirmed
21 Memory leak serial gs_start_io (u_serial.c) linux-5.8 Confirmed
22 Null-ptr-deref ecm gether_disconnect (u_ether.c) linux-5.8 Confirmed
23 Null-ptr-deref common __configfs_open_file (file.c) linux-5.8 Reported
24 Null-ptr-deref ecm ecm_opts_ifname_show (f_ecm.c) linux-5.8 Reported
25 Use-after-free serial check_tty_count (tty_io.c) linux-5.8 Reported
26 Use-after-free conn conn_gadget_read (f_conn_gadget.c) android-4.9 (S) Patched
27 Use-after-free mtp mtp_read (f_mtp.c) android-4.9 (S) Confirmed
28 Use-after-free accessory acc_read (f_acc.c) android-5.4 (G) Patched CVE-2021-0936
29 Memory leak cdev usb_cser_set_alt (f_cdev.c) android-4.19 (S) Reported
30 Use-after-free laf laf_read (f_laf.c) android-4.19 (L) Patched CVE-2021-26689
31 Use-after-free accessory acc_read (f_acc.c) android-4.9 (S) Confirmed
32 Use-after-free mtp mtp_read (f_mtp.c) android-4.19 (L) Confirmed
33 Use-after-free cdev f_cdev_open (f_cdev.c) android-4.9 (S) Patched CVE-2021-30313
34 Null-ptr-deref laf laf_release (f_laf.c) android-4.19 (L) Reported

TABLE VII: List of previously unknown bugs discovered by FUZZUSB.

deallocated by hidg_free() without checking its validity
(line 16).

Note that to trigger this bug, a fuzzer needs to not only
consider inputs from multiple channels but also understand
the statefulness of the communication. Figure 10 illustrates
a sequence of state transitions leading up to the bug. Since
the buggy point resides deeply in the state machine, to reach
this location, the fuzzer needs to follow a specific transition
path, producing the right inputs for the different channels. In
particular, when the code is in the state (wait-data), without
the input from Ch1 and Ch3, a simple sequence of fuzzing
inputs in a limited channel cannot trigger the bug because the
code will not receive data from the host, but instead return at
line 7. Unlike other code coverage guided fuzzers, FUZZUSB
is able to follow all the needed steps to fully explore the code’s
internal states, revealing deep bugs much more efficiently.

B. Efficiency

Apart from its ability to find previously unknown vulnera-
bilities, we evaluate FUZZUSB in terms of code coverage. As
mentioned earlier in §VI, we first try to obtain the best mutation
ruleset, which we will rely on for the rest of the evaluation. In
this experiment, we run FUZZUSB using different mutation
rules and compare the achieved coverage. Considering the rule
choices available and various testing scenarios, we use a total of
16 different rule combinations as follows: nonstop transition (A)

1 /* function from Ch4 */
2 ssize_t f_hidg_read(struct file *file, ...)
3 {
4 struct f_hidg *hidg = file->private_data;
5 ...
6 if (recv_data_from_host ()) // wait for data from Ch3
7 goto fail;
8 ...
9 list = list_entry(&hidg->complete, ...) // error!!

10 ...
11 }
12 /* function from Ch1 */
13 void hidg_free(struct usb_function *f)
14 {
15 struct f_hidg *hidg = func_to_hidg(f);
16 kfree(hidg);
17 ...
18 }

Fig. 9: Vulnerable HID gadget code.

and 3 sec interval transition (B) for R1, transition-coverage (C)
and transition-coverage (D) for R2, unexplored state selection
(E) and random state selection (F) for R3, and reconnection
(G) and 5 times retrials (H) for R43. Figure 11 presents the
per-rule average code coverage for 28 gadgets. We ran the
tests for 24 hours for each combination with every gadget. The
experimental results show that coverage does not benefit much

3We did initial experiments ahead by changing (and incrementing) thresholds.
As a result, 5 times retry was enough for state transitions to complete when
transitions failed, and 3 sec transition interval was the smallest we could
observe some difference from nonstop transitions.
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Fig. 10: The state transitions of the vulnerable HID gadget in Figure 9
necessary to reach the bug.
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Fig. 12: Coverage and bug-finding results running FUZZUSB for 50
hours.

from random transition R3(F) in comparison with unexplored
first approach R3(E) due to the frequently revisiting of the
explored states by random transitions. Meanwhile, transition
coverage R2(C) presents a slightly better result than state-
coverage R2(D), as taking bi-directional transitions provides
more chances to explore more paths. Based on these results, we
choose the mutation ruleset that yields the best performance
in coverage, i.e., showing 1.0 scaled coverage in the table

— nonstop transition (R1(A)), transition-coverage (R2(C)),
unexplored first (R3(E)) and 5 times transition retrials (R4(H)).
We use this ruleset for the rest of our evaluation.

We ran FUZZUSB using 28 gadgets and measured the
achieved code coverage over 50 hours. We compared it
with the result from the baseline fuzzers, G-fuzzer, and
FuzzUSB-SL. Figure 12a shows the average results after
three runs. Compared with the baseline G-fuzzer, FUZZUSB
achieved significant coverage improvements. FUZZUSB also
outperforms FuzzUSB-SL, implicating that state-aware input
generation is crucial in improving the code coverage in addition
to multi-channel fuzzing. In short, full-fledged FUZZUSB
showed three times and two times of improvement in the
code coverage when compared to the general code-coverage
guided fuzzers, G-fuzzer, and FuzzUSB-SL, respectively.

Figure 13 presents per-gadget code coverage after 50-hour
runs. As expected, FUZZUSB showed better coverage for all
the cases in comparison with FuzzUSB-SL and G-fuzzer.
Note that the coverage difference is much higher in the mass_-
storage gadget because of the reason that we discussed in
§III — its core functionality (e.g., handling SCSI) relies on
state-aware inputs, resulting in poor performance if inputs
remain state-agnostic. Unlike FUZZUSB and FuzzUSB-SL,
the coverage of G-fuzzer showed varying results per gadget.
The reason is that most of the coverage achieved by G-fuzzer
was derived by executing the first two initialization phases of
a gadget driver (i.e., configuration and enumeration), which
are shared among gadgets.

We designed another experiment to better highlight the
contribution of FUZZUSB to code coverage of stateful fuzzing.
In this experiment, we trigger state transitions every 30
seconds, while, in between, we resort to code coverage only
to guide mutations. Figure 14 demonstrates the code coverage
improvement rate for the first 5 minutes of FUZZUSB’s run.
The experiment relies on 3 gadgets that represent unique
behaviors with different USB device classes (e.g., Ethernet
and storage). As expected, the higher rate of coverage growth
happens every 30 seconds, just after we enable the state-
transition-based mutations. In particular, higher growth rates
are observed up to the early stage of the data communication
phase (near 150 seconds), meaning that state transitions are
essential in these phases.

In addition, we investigate the effectiveness of the multi-
channel fuzzing, breaking down the overall coverage by
inputs from different channels. Figure 15 shows per-channel
coverage results with the same gadget set used in Figure 14,
listing coverage from the host, gadget, and both channels
(i.e., combination). Although the figure solely illustrates
the partial result in the first 3 hours of the experiment (to
particularly highlight the most coverage change), we ensure
that each experiment lasted for 24 hours and the rest of the
(unplotted) results yielded the same trend. As shown in the
figure, for all these gadgets, the individual channels have their
unique coverage contribution, and this implies that fuzzing
multiple channels is essential to achieve more coverage than
single-channel fuzzing. Overall, the gadget channel presents a
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Fig. 13: Per-gadget code coverage after 50-hour runs.

: state transition point!!

Fig. 14: Coverage improvement rate within the first five minutes
of execution for three representative gadgets. To highlight coverage
contribution by state changes, we only allow state transition every 30
seconds.

higher contribution at an earlier time, because it is in charge of
early initialization steps, e.g., gadget configuration. Note that
the host channel has more impact on mass_storage gadget
than the others. This happens because the mass_storage
gadget heavily interacts with the host by following the SCSI
protocol.

C. FreeBSD USB Gadget Stack

To show the generality and flexibility of FUZZUSB, we
extend FUZZUSB to examine the USB gadget stack of
FreeBSD 14, the latest version at the time of the experiment.
Note that FreeBSD is used for not only desktop and server
machines but also embedded and IoT devices, supporting
multiple USB gadget functionalities [44–46].
Experimental setup. Unlike Linux and Android, FreeBSD
USB stacks lack a software-emulated bridge between the host
and gadget stacks. Thus, we emulated the hardware bridge from
scratch to handle underlying UDC hardware, and established
a virtual connection from the USB host. Based on this, we
applied our fuzzing system equipped with our stateful input
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Fig. 15: Coverage breakdown by the type of channels. While
presenting unique coverage contribution from host and gadget
channels, combination represents the coverage from the both
channels.

mutation engine to FreeBSD gadgets. Using 7 gadgets, we
carried out experiments under the same mutation ruleset used
in §VI-B. Note that there is no explicit user-side input channel
because FreeBSD gadget drivers are self-contained without
user-specified configurations (e.g., device setup inputs). Hence,
we focus on host channel fuzzing guided by the extracted
gadget state machines. We achieve this by adjusting the algo-
rithm to recognize the FreeBSD-specific transition and gadget
entry functions, such as usb_request_callback(). For
comparison, we designed a basic FreeBSD gadget fuzzer as
the baseline using typical code coverage instead of stateful
fuzzing on par with G-FUZZER.

Evaluation. Based on the experimental setup, we evaluate
several aspects of FUZZUSB on FreeBSD. In particular, we
examine the bug-finding efficiency and coverage. Similar to
§A, we measured the detection time of a given bug (crash)
compared with the baseline. Since there are no available bug
reports for the FreeBSD gadgets in testing [47], we introduced a
previously-known memory corruption security bug by reverting
a commit fixing it (i.e., one safety check against invalid memory
access [43]). As shown in Table VIII, FUZZUSB led the
executions to the bug quickly while the baseline cannot discover
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ID Bug type Gadget Kernel Detection time

G-fuzzer FUZZUSB-SL FUZZUSB

CVE-2019-14763 [41] Deadlock hid linux-4.16 ✗ 2.51 mins 2.24 mins
CVE-2018-20961 [42] Double-free midi linux-4.16 ✗ 4 days 3.5 hours
commit-9c847ff [43] Invalid access eem FreeBSD ✗ N/A 1.18 mins

TABLE VIII: Detection time for previously-known USB gadget bugs (✗: detection failure).
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Fig. 16: Per-gadget coverage in FreeBSD after 50-hour run.

the bug due to stateless fuzzing that unlikely reaches deep code
paths. Furthermore, we carry out fuzzing campaigns for 50
hours and collect execution coverage. The result in Figure 16
shows that FUZZUSB outperformed the baseline coverage.
Specifically, it achieves 2.2× improvement of coverage. The
performance improvement is larger in large codebase gadgets
(e.g., eth). Such results imply the advantage of the state-
aware fuzzing of FUZZUSB. To highlight the improvement
contributed by our stateful input mutation, similar to Figure 14,
we demonstrate the coverage improvement rate during the
first 5 minutes of the execution. Figure 17 depicts the mass
gadget as an example and the average result of our targeted 7
FreeBSD USB gadgets. As expected, each state change directly
contributed to a higher coverage increase, especially during
the early time of the execution.
Takeaway. As demonstrated by the evaluation above, we
can apply FUZZUSB to other operating system kernels for
USB gadget stack fuzzing, provided that a software bridge is
available to establish a virtual USB connection. The fact that
no USB gadget bugs are ever reported, and our fuzzing did not
find any USB gadget bugs either in FreeBSD may suggest some
efficient ways to reduce the attack surface of USB gadget stacks,
that are, 1) limiting the number of gadgets, 2) simplifying the
implementation of each gadget, and 3) disabling user-space
configurations.

VII. DISCUSSION

Bug reproducibility. Among our new bug findings, we
observe a number of them being race conditions bugs. As
a result, we notice that around 30% of our findings could
be reproduced deterministically, while the rest could not
be reproduced due to the non-deterministic nature of race
conditions. This is also a known issue of syzkaller when
reproduced programs fail to reproduce bugs. One possible
way to increase the bug reproducibility is to record and replay
the runtime state of a gadget driver within the kernel, which
requires a unified design and implementation of a gadget state.

Fig. 17: Coverage improvement rate for 7 FreeBSD gadgets on average.
Similar to Figure 14, a state transition is triggered every 30 seconds
for 5 minutes.

Optimal mutation strategy. As mentioned in §VI, we used
the fixed rules for the stateful mutation in FUZZUSB by default,
assuming that they can help maximize the performance in
coverage extension. However, the optimal mutation strategy
might be gadget-dependent and need to be changed over time
depending on the status of a gadget. For example, complex gad-
gets with a large codebase, such as mass_storage, should
be extensively targeted and fuzzed in the data communication
phase to be more effective. We leave such exploration for our
future work.
Android USB gadget fuzzing. To fuzz Android-specific
gadget drivers, we manually looked into Android kernels from
different Android OEMs and ported the unique drivers into the
corresponding mainline kernels. Ideally, fuzzing an Android
kernel within QEMU directly without any change would be the
best way. Unfortunately, due to hardware diversity, we could
not find one emulation environment supporting all different
Android kernels. For the same reason, existing Android USB
fuzzing still relies on physical Android devices [48].
USB gadget stack coverage. Although we have been focusing
on USB gadget drivers, such as CDC, HID, and MSC,
FUZZUSB covers the whole USB gadget stack fuzzing because
of the connections between USB gadget drivers and other layers
as shown in Figure 1 except UDC drivers. To fuzz UDC drivers
in a scalable fashion, we need to emulate the physical layer of
UDC hardware in QEMU, which unfortunately only provides
the basic HCD hardware (e.g., xHCI) evaluation. Consequently,
the current UDC driver fuzzing requires the corresponding
hardware, such as a RaspPi Zero or an Android phone [20].
USB gadget stacks in other OSes. The USB gadget stack
in the Linux kernel might be the most widely used due to
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Android and Embedded Linux adoption. Beside Linux gadgets,
we additionally evaluate FUZZUSB with the USB gadget stack
in the FreeBSD kernel to present the generality of our approach.
Hence, we believe FUZZUSB is also applicable to other open-
source gadget stacks, such as Zephyr [49] and Mbed [50],
which usually have limited functionalities, e.g., supporting a
limited number of USB classes, although maybe non-trivial,
requiring an emulation environment for the corresponding OS,
e.g., QEMU, a USB host environment provided by the target OS
or another OS, e.g., Linux, a virtual USB connection between
the USB host and the corresponding USB gadget stack, and a
means to collect code coverage from within the target OS.
Imprecise static analysis. Static analysis is known to
potentially cause imprecise analysis results [51]. Specifically,
false positives can be introduced by over-approximation of
static analysis encompassing infeasible indirect call targets.
In contrast, false negatives can be introduced by under-
approximation caused by missing indirect call targets. For-
tunately, we did not observe any specific problems caused by
imprecise static analysis in our experiments, as its analysis
scope is bounded within explicit gadget entry and transition
points. Meanwhile, we could mitigate the aforementioned
limitations by leveraging existing techniques aiming at reducing
the false positives [52, 53] or false negatives [54]. Moreover,
symbolic analysis can compensate for such limitations. For
example, as our path exploration analysis is achieved through
symbolic execution, we can handle indirect branches as long
as the corresponding function pointers are symbolically tainted.
Although we may miss untainted indirect branches, they can
be ignored safely because such branches are not part of state
machines controlled by fuzzing inputs.

VIII. RELATED WORK

USB vulnerability detection. Despite the consistent efforts
to reveal USB vulnerabilities for many years [14–19, 55–
57], USB still has been shown to be vulnerable to various
attacks. Relying on software testing technique, one side of
the efforts [18, 19, 48] takes a hardware-based approach,
leveraging dedicated hardware boards to support essential
functions of USB devices. Another large body of works [14–
17, 55, 57] examines USB stacks using software emulated
USB devices without physical peripheral devices. Either way,
as discussed in §III, existing USB fuzzers are not suited for
fuzzing USB gadget stacks as they are originally designed
to test USB host drivers. In particular, they do not much
take the key features of USB protocols into account: multiple
input channels and statefulness. Thus, their fuzzing efficiency
is limited significantly. FirmUSB [56] exercises symbolic
execution with USB domain knowledge and finds security
bugs in USB device firmware. However, it cannot tackle the
statefulness and multiple channel challenges either, and suffers
from other issues, such as path explosion.
Stateful fuzzing. Modern fuzzers often increase the efficiency
by taking the statefulness of programs under test [8–10, 58–63].
Commonly, OS kernel fuzzers [8–10, 58] try to resolve the

dependencies of system calls (and APIs), to generate better test
cases that fit into the input format specific to the target domain.
Despite such efforts to understand stateful kernel execution, it
cannot represent the accurate internal states of the target system,
thereby making stateful fuzzing less efficient. Known network
protocol fuzzers [60–62] or mobile application fuzzers [59]
also rely on stateful communication with explicit state ma-
chines. However, they require either network traces or mobile
communication logs in order to infer their state machines which
cannot accurately represent actual state machines of the target
system. More importantly, the aforementioned stateful fuzzers
must be customized significantly to fuzz USB software stacks
with multi-channel inputs. A recent work [63] devises stateful
fuzzing by taking advantage of good human oracle rules to
explore untested state space, but its mutation fully relies on
manual annotations. Consistent with their claim, we leverage
USB states as an oracle specialized in USB gadget fuzzing,
which existing works have not accomplished. Furthermore, our
oracles require in-depth analysis of complex USB software
stacks to define input spaces and automatically build state
machines.

IX. CONCLUSION

In this paper, we present FUZZUSB, the first USB fuzzing
technique for a USB gadget system. FUZZUSB achieves state-
guided fuzzing upon gadget-specific state machines, which
effectively addresses the multi-channel and stateful nature of
USB communication. FUZZUSB found 34 previously unknown
vulnerabilities with security impacts in the latest Linux and
Android kernels, and outperformed the baseline fuzzers with
3× higher code coverage, 50× improved bug-finding efficiency
for Linux USB gadget stacks, 2× higher code coverage for
FreeBSD USB gadget stacks, and reproducing known bugs
that the baseline fuzzers could not detect.
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APPENDIX A
EFFICIENCY OF BUG FINDING

In this section, we evaluate how effective FUZZUSB is in
finding bugs. We performed the following two experiments: 1)
measure the number of vulnerabilities identified by FUZZUSB
within a limited period of time; and 2) measure the time taken to
identify previously known CVE vulnerabilities. While running
each experiment, we also run other gadget fuzzers to compare
the time-to-detection.

First, we examine how many bugs that FUZZUSB can
discover within a limited period of time. Using the kernel
version Linux-5.5, we ran FUZZUSB along with the two
gadget fuzzers for 50 hours. Removing duplicate crashes
(using syzkaller crash-hashing functionality), we recorded the
number of uniquely identified bugs for three running times,
then obtained the average results as presented in Figure 12b.
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Compared with FuzzUSB-SL and G-fuzzer, FUZZUSB
not only found more bugs (about 40) in total but also found
the first bugs faster. Given the total number of bugs detected
by G-fuzzer and FuzzUSB-SL in 50 hours, FUZZUSB
showed the same bug-finding capability after 1 hour and 10
hours, respectively.

We carried out an additional experiment based on known
CVEs to measure the time taken to detect. Specifically, we
run FUZZUSB to detect CVE-2019-14763 and CVE-2018-
20961. Table VIII summarizes the results of this experiment.
FUZZUSB found these two bugs faster than FuzzUSB-SL.
In addition, we noticed that G-fuzzer is unable to find any
of these two bugs, since it cannot go deeper in the gadget code
due to the lack of multi-channel fuzzing capability.

To summarize, in terms of bug-finding efficiency, FUZZUSB
shows 50 times better performance than code-coverage fuzzing
G-fuzzer, and achieves 5 times higher efficiency than
FuzzUSB-SL.

Kernel Gadget # States/Trans Analysis time (sec)

Static Symbolic Total

hid 15 / 28 1.75 7.30 10.07
mass 15 / 42 11.70 35.22 48.22
printer 15 / 28 2.73 7.28 11.34
acm 14 / 26 1.68 10.11 13.66
ecm 14 / 26 1.69 13.28 16.67
ncm 14 / 26 1.71 13.34 16.28
eem 14 / 26 1.62 12.50 15.49

Linux rndis 14 / 26 1.43 14.29 17.53
& subset 14 / 26 1.68 12.21 15.20

Android midi 14 / 26 1.24 15.19 17.40
uac1 14 / 26 1.77 16.36 19.24
uac1_leg 13 / 24 1.76 14.21 17.19
uac2 13 / 24 1.86 15.92 19.41
serial 14 / 26 1.16 9.17 11.72
obex 14 / 26 1.30 7.72 9.89
tcm 15 / 30 4.33 18.50 23.87
loopback 12 / 24 0.79 6.90 9.38
sourcesink 14 / 26 1.33 9.11 11.79
phonet 14 / 26 1.26 10.27 13.30

accessory 14 / 26 1.71 11.44 15.25
audio_src 12 / 22 1.15 8.98 11.69
mtp 14 / 26 2.11 11.12 14.53

Android conn 14 / 26 2.22 12.24 15.45
specific cdev 14 / 26 1.09 8.51 11.48

ptp 14 / 26 2.09 11.97 16.16
ccid 16 / 30 2.33 14.80 18.74
laf 14 / 26 1.50 9.76 13.15
hw_acm 14 / 26 1.74 9.19 12.17

TABLE IX: Performance of state machine construction.

APPENDIX B
OVERHEAD OF BUILDING STATE MACHINES

In this section, we examine the building process of state
machines. Table IX summarizes the result of our state machine
construction. In the table, the third column indicates the number
of states as well as transitions for each gadget, and the last
three columns present the time needed by the analyses to build
the state machines. The overhead of building state machines
is 15.93s on average, including static and symbolic analysis as
well as state merging.

Our observation found that the mass_storage gadget has
much more transitions than other gadgets because it needs

1 /* function from Ch2 */
2 int hidg_set_alt(struct usb_function *f, ...)
3 {
4 if (hidg->in_ep != NULL) {
5 ...
6 // allocation point
7 req_in = hidg_alloc_ep_req(hidg->in_ep, ...);
8 if (!req_in) {
9 // error handling

10 }
11 }
12 ...
13 if (hidg->in_ep != NULL) {
14 hidg->req = req_in; // missing point
15 ...
16 }
17 }
18 /* function from Ch1 */
19 void hidg_disable() {
20 ...
21 usb_ep_disable(hidg->in_ep);
22 ...
23 }

Fig. 18: A victim gadget code.

1 /* exploit function from Ch2 */
2 void Ch2_exploit(arg)
3 {
4 while (1)
5 feed_input(Ch2, arg)
6 }
7 /* exploit function from Ch1 */
8 void Ch1_exploit(arg)
9 {

10 while (1)
11 feed_input(Ch1, arg)
12 }
13 create_thread (Ch2_exploit, reset_connect);
14 create_thread (Ch1_exploit, disable_connect);

Fig. 19: Feasible PoC exploit against Figure 18.

to fully deal with a layered communication protocol (e.g.,
SCSI) over the USB channel. To tackle all protocol commands,
we leverage corresponding transition inputs obtained from
the symbolic execution, which increases the total transition
numbers. Accordingly, to fully handle every command, mass_-
storage includes large functionalities with a large codebase.
For this reason, building the state machine for this gadget
driver requires more time. In contrast, the loopback gadget
provides simpler functionalities — it receives messages from
Ch3, and sends them back through that channel, resulting in a
smaller number of states.

APPENDIX C
ADDITIONAL CASE STUDIES

A. DoS attack

Aside from §C-B, we present an additional example of ex-
ploitation. In Figure 18, the buggy function hidg_set_alt
tries to reset the connection. For a new connection, the function
allocates a kernel object req_in to hold data from the host
(line 7). Since the assignment of req_in into a global instance
at line 14 is away from its initial allocation at line 7, during
such time window, the object can leak by the not-taken branch
at line 13 if unexpected disconnect function hidg_disable
nullifies the instance in_ep (line 21). Figure 19 outlines the
corresponding PoC code. The idea behind the PoC is to realize
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Component Language Lines of Code

FSM construction Python,C++ 1,564
Fuzzer Go 630
State manager Python 844
Host backend C 1,381

TABLE X: Lines of code composing FUZZUSB.

such a race condition between the reconnection (Ch2) and
disconnection (Ch1), in the hope that we meet the condition
of the memory leak above. Using two separate threads, we
extensively feed inputs from the two channels Ch1 and Ch2,
to trigger reconnection and disconnection simultaneously. After
10-hour running of the exploit code, we observed the kernel
memory space fills up (as a result of frequent memory leaks),
causing the denial-of-service (DoS). Such a DoS exploit is
crucial, for instance, when providing services in the cloud
system. Note that FUZZUSB not only improves the capability
of revealing such a bug with our multi-channel mutation but
also facilitates exploit generation by providing the infrastructure
of the multi-channel input distribution, which are unlikely done
by existing USB fuzzers.

B. Control-flow attack

To demonstrate the high severity of our findings, we
demonstrate an arbitrary code execution on the buggy HID
gadget shown in Figure 9. Referring to the reported attack
scenario against use-after-free bugs [64, 65], we successfully
diverted the control flow of the HID driver, and achieved
illegitimate code execution. The exploit works by reallocating
the freed memory (i.e., hidg at line 16) and putting a
compromised value into the function pointer in hidg, leading
to an illegal control flow transfer when the HID driver accesses
its dangling pointer. This example is fully exploitable because
the vulnerable object hidg contains abundant function and
data pointers (e.g., unbind), and attackers can populate them
with user-supplied data via system calls (e.g., sendmsg).

A successful exploitation is challenging, because it needs
to reallocate the memory region where the vulnerable object
(e.g., hidg) was occupied in a short time window between
its deallocation and the dangling pointer access. In this
example, however, the attacker could easily manipulate such
a time window, because the dangling pointer occurrence and
dereference could be controlled by system calls, i.e., close()
and read(), respectively. The PoC allows attackers to take
control of the gadget, diverting its control flow.
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